4,595 research outputs found

    On the binding of polarons in a mean-field quantum crystal

    Full text link
    We consider a multi-polaron model obtained by coupling the many-body Schr\"odinger equation for N interacting electrons with the energy functional of a mean-field crystal with a localized defect, obtaining a highly non linear many-body problem. The physical picture is that the electrons constitute a charge defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the possibility to form a bound state of electrons via their interaction with the polarizable background. We prove first that a single polaron always binds, i.e. the energy functional has a minimizer for N=1. Then we discuss the case of multi-polarons containing two electrons or more. We show that their existence is guaranteed when certain quantized binding inequalities of HVZ type are satisfied.Comment: 28 pages, a mistake in the former version has been correcte

    Application of Sequential Quasi-Monte Carlo to Autonomous Positioning

    Full text link
    Sequential Monte Carlo algorithms (also known as particle filters) are popular methods to approximate filtering (and related) distributions of state-space models. However, they converge at the slow 1/N1/\sqrt{N} rate, which may be an issue in real-time data-intensive scenarios. We give a brief outline of SQMC (Sequential Quasi-Monte Carlo), a variant of SMC based on low-discrepancy point sets proposed by Gerber and Chopin (2015), which converges at a faster rate, and we illustrate the greater performance of SQMC on autonomous positioning problems.Comment: 5 pages, 4 figure

    Negative association, ordering and convergence of resampling methods

    Get PDF
    We study convergence and convergence rates for resampling schemes. Our first main result is a general consistency theorem based on the notion of negative association, which is applied to establish the almost-sure weak convergence of measures output from Kitagawa's (1996) stratified resampling method. Carpenter et al's (1999) systematic resampling method is similar in structure but can fail to converge depending on the order of the input samples. We introduce a new resampling algorithm based on a stochastic rounding technique of Srinivasan (2001), which shares some attractive properties of systematic resampling, but which exhibits negative association and therefore converges irrespective of the order of the input samples. We confirm a conjecture made by Kitagawa (1996) that ordering input samples by their states in R\mathbb{R} yields a faster rate of convergence; we establish that when particles are ordered using the Hilbert curve in Rd\mathbb{R}^d, the variance of the resampling error is O(N−(1+1/d)){\scriptscriptstyle\mathcal{O}}(N^{-(1+1/d)}) under mild conditions, where NN is the number of particles. We use these results to establish asymptotic properties of particle algorithms based on resampling schemes that differ from multinomial resampling.Comment: 54 pages, including 30 pages of supplementary materials (a typo in Algorithm 1 has been corrected

    Birth and death processes with neutral mutations

    Get PDF
    In this paper, we review recent results of ours concerning branching processes with general lifetimes and neutral mutations, under the infinitely many alleles model, where mutations can occur either at birth of individuals or at a constant rate during their lives. In both models, we study the allelic partition of the population at time t. We give closed formulae for the expected frequency spectrum at t and prove pathwise convergence to an explicit limit, as t goes to infinity, of the relative numbers of types younger than some given age and carried by a given number of individuals (small families). We also provide convergences in distribution of the sizes or ages of the largest families and of the oldest families. In the case of exponential lifetimes, population dynamics are given by linear birth and death processes, and we can most of the time provide general formulations of our results unifying both models.Comment: 20 pages, 2 figure

    Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits

    Full text link
    We prove that Gibbs measures based on 1D defocusing nonlinear Schr{\"o}dinger functionals with sub-harmonic trapping can be obtained as the mean-field/large temperature limit of the corresponding grand-canonical ensemble for many bosons. The limit measure is supported on Sobolev spaces of negative regularity and the corresponding density matrices are not trace-class. The general proof strategy is that of a previous paper of ours, but we have to complement it with Hilbert-Schmidt estimates on reduced density matrices.Comment: Minor changes and precision

    The mean-field approximation and the non-linear Schr\"odinger functional for trapped Bose gases

    Full text link
    We study the ground state of a trapped Bose gas, starting from the full many-body Schr{\"o}dinger Hamiltonian, and derive the nonlinear Schr{\"o}dinger energy functional in the limit of large particle number, when the interaction potential converges slowly to a Dirac delta function. Our method is based on quantitative estimates on the discrepancy between the full many-body energy and its mean-field approximation using Hartree states. These are proved using finite dimensional localization and a quantitative version of the quantum de Finetti theorem. Our approach covers the case of attractive interactions in the regime of stability. In particular, our main new result is a derivation of the 2D attractive nonlinear Schr{\"o}dinger ground state
    • …
    corecore